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Abstract— The grand canonical ensemble Monte Carlo simulations have been carried out to inves-
tigate the thermodynamic and structural properties of hard-sphere fluids confined within a spherical
hard-wall pore. Equilibrium partition coefficients and pore density profiles are computed over a wide
range of particle-to-pore size ratios and concentrations distributing between an external bulk phase
and a pore phase. The simulation data for equilibrium partitioning are used to assess the limitations
and applicabilitiec of theoretical approximations including the virial expansion equation and the exten-
ded two-state prediction. The Monte Carlo results obtained in these studies, in conjunction with
the theoretical models, provide the basis for a discussion on the steric effects in size-exclusion parti-

tioning of such systems.

INTRODUCTION

Quantitative prediction of partitioning or distribu-
tion equilibrium is often necessary for the design of
units in the chemical processes, including such areas
as gel-permeation chromatography, membrane separa-
tion and transport, and adsorption processes using he-
terogeneous catalysis. The magnitude of partitioning
into porous media may significantly differ from one
system to another. One of the most important contri-
butions to equilibrium partitioning is the steric exclu-
sion effect between one molecule and the external
pore wall. In addition, the presence of adsorption force
fields influences equilibrium partitioning, particularly
when the fluid is gas or vapor. In such cases the attrac-
tive interaction can enhance the degree of partition-
ing whereas the repulsive interaction will reduce the
partition coefficient.

Although the concept of size-exclusion partitioning
was recognized many years ago [1], it was only com-
paratively recent that theoretical equations have been
developed and applied for pore systems. Following
from the pioneering work of Giddings et al. [2], there
are several theoretical equations based on statistical
mechanical approximations. Currently, the different
approaches to this subject may be classified as (i) virial
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expansions [3-7], (i) integral equation theories [8-
10], and (iii) density functional approximations [11-
13]. A comprehensive review in this area is provided
by Deen [14], and more recently by Fanti [15].

Reliable and unambiguous results have become in-
creasingly necessary to eliminate any underlying un-
certainties involved in various theoretical approaches.
One of the most widely used model pores in these
studies is a geometrically ideal pore such as a slit,
cylindrical, or spherical one. The simplest possible
model potential is that of a hard-sphere fluid com-
bined with only sterically exclusive hard-wall interac-
tions. However, the present level of modeling achieve-
ments in this area is far too crude to allow direct com-
parison with real laboratory experiment. Consequent-
ly, as an intermediate between theory and experi-
ment, molecular-based computer simulations have pro-
ved to be an extremely useful diagnostic tool. In prin-
ciple such machine experiment (computer simulation)
can represent essentially ‘exact’ experimental data
for precisely defined model systems.

In the present work, we investigate the thermody-
namic and structural properties of confined hard-
sphere fluids inside a structureless spherical hard-wall
pore. To this end, grand canonical ensemble Monte
Carlo (GCEMC) simulations have been carried out
over a wide range of pore fluid concentrations and
particle-to-pore size ratios. A simple pore model is
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used to elucidate the most important features govern-
ing the size-exclusion partitioning in a spherical cav-
ity. Our simulation results can also provide a basis
to discuss whether or to what extent theoretical ap-
proximations appearing in the literature can be applied
to predict the equilibrium properties of such systems.

EQUILIBRIUM PARTITIONING

The partition coefficient, K, is defined as the ratio
of the average concentration in the pore phase to that
in the external bulk phase under equilibrium condi-
tions:

)
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where the subscripts p and b refer to the pore and
the bulk phase, respectively.

Since the bulk and the pore fluids are in equilib-
rium, the chemical potentials are the same in both
phases:

Mo = Hp 2)

Choosing the ideal gas state of unit activity and fixed
temperature as the standard state, the chemical poten-
tials for both phases can be written as

w=1w+kT In (y, ny) 3)
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where k is the Boltzmann constant and v is the activity
coefficient. V, and V, ., respectively, denote the total
pore volume and the effective pore volume accessible
to the single pore particle.

From Eq. (1) through Eq. (4) one may find

Vo V5
K= Vi v ©)

The equilibrium partition coefficient expressed in this
equation is a general expression for a given pore sys-
tem.

In the virial-type approaches [3-7], the ratio of the
activity coefficients in Eq. (5) can be written as a se-
ries expansion in powers of the reduced bulk concen-
tration n,*:

K=K.(Q+a m*+az n,*+---) ®)

The leading term, K,, directly corresponds to the
Henry's law constant at infinite dilution resulting from

particle-pore wall interactions alone. Computations are
simplest in this Henry's law limit where interactions
among pore particles become negligible. In the case
of rigid particles inside impenetrable hard-wall pores,
the center of a particle cannot be closer to the pore
wall than the wall contact distance. As a result, in
the systems of hard-sphere fluids within geometrically
well-defined pores, the Henry’s law constant is simply
given by

K=~ =1y %)
Vi
where A is the paiticle-to-pore size ratio and n=1,
2, or 3 for the infinite slit, cylindrical, or spherical
pores, respectively.

o1, U, etc., appearing in Eq. (6) represent the virial
coefficients arising from the interaction of clusters of
two, three, etc., pore particles with the pore wall. For
a one-component hard-sphere fluid trapped in a slit,
cylindrical, and spherical pore, the first and second
virial coefficients, a; and az, can be evaluated within
the framework of the statistical mechanics [3-5]. The
results obtained for the first virial coefficient are es-
sentially exact. However, the second virial coefficient
must be calculated numerically, e.g. with the aid of
the Percus-Yevick approximation in order to avoid the
complex configurational integral of three particles si-
multaneously interacting with each other and with the
pore wall. An obvious trend is that the higher order
terms in the virial expansion increase in computational
complexity, and direct calculations are very difficult
even for simple pore geometries.

THE GCEMC SIMULATION METHOD

We consider a system of a hard-sphere fluid with
molecules of diameter ¢ inside a structureless spheri-
cal hard-wall pore of diameter d,. The fluid-fluid, ¢
and the fluid-wall interactions, ¢, can be expressed
as

_foo, >0
%(r)—( 0, r<o ®)
and
[ oo t>Ryy
ou=( o i ©

where R, represents the effective pore radius, ie.,
(d,—o)/2.

The fluid inside the pore is in equilibrium with the
bulk fluid. In the grand canonical ensemble itself, the
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chemical potential y, the total volume V, and the tem-
perature T of the system are fixed. Since the number
of fluid particles is allowed to fluctuate in this pVT-
ensemble, the GCEMC calculation is most appropriate
for determining the partition coefficient for the systems
to be studied [16,17]. Asymmetric GCEMC sam-
pling, proposed by Adams [18, 19], consists of two
independent steps. In the first step, a randomly cho-
sen particle is moved within a given maximum displace-
ment. The move is either accepted or rejected sub-
ject to the potential energy change. This procedure
is exactly the same as the conventional canonical en-
semble Monte Carlo method. The second step pro-
ceeds to attempt an addition or removal of a particle.
The success of either an addition or removal is con-
trolled both by the potential energy change and by
the chemical potential parameter. This compound
event is repeated as many times as is desired and
the equilibrium properties of the systems are evalua-
ted at each step.

Computations for the bulk hard-sphere fluid were
not required since the chemical potential in Eq. (2),
or conversely the activity coefficient in Eq. (3), at any
given concentration can be calculated with sufficient
accuracy using the Carnahan-Starling equation of state
[20]:

- n8—9m+3n)
kT 11—

(10

where n=(6/n) n,* is the hard-sphere packing fraction
and n,*=n,6* is the reduced bulk number density.

The initialization procedure adopted here was to
construct the simulated pore model, devoid of fluid
particles, and then proceed directly to the GCEMC
algorithm of the hard-sphere fluid [18]. During the
initial stages of a simulation the configurations genera-
ted were not representative of the equilibrium ensem-
ble and were discarded from the averaging process.
In all cases studied here configurations were equili-
brated for 2-4 million steps before accumulating data.
The resulting ensemble averages were obtained du-
ring the final 40-80 million simulation steps.

RESULTS AND DISCUSSION

In Fig. 1 we illustrate the concentration dependen-
cies on size-exclusion partitioning for the particle-to-
pore size ratios, A=0.2 and A=0.4. The resulting par-
tition coefficients obtained from the GCEMC compu-
tations are shown as a function of bulk concentrations.
Also shown in this figure as solid curves are theoreti-
cal predictions using the virial-type expansions given
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Fig. 1. Partition coefficient as a function of n,* for A=0.2
and A=04.

in Eq. (6), in which terms up to order of n,** are includ-
ed. To date, this virial expression has been moder-
ately successful in explaining the concentration effects
for the equilibrium partitioning of inert, noninteracting
solute systems. For the systems studied here, the a-
greement with the GCEMC results is seen to be good
in lower concentrations n,*<0.3.

The partition coefficients calculated using this trun-
cated virial expansion, however, depart from the sim-
ulation results with increasing bulk fluid concentra-
tions. Furthermore, the limited form of the three-term
virial expansion in Eq. (6) can either underestimate
or overestimate K-values depending on the values of
X and n,*. The poor agreement with the GCEMC cal-
culations for higher bulk concentrations is primarily
due to the omitted terms of order of n,* or greater.
In addition, as mentioned earlier, the theoretical re-
sults for a, calculated by Glandt [3,4] and Anderson
and Brannon [5] are based on the Percus-Yevick ap-
proximation. This approximation was found to be inac-
curate particularly at the high concentration regime;
for example, the second virial coefficient was under-
estimated by as much as 35% for narrow cylindrical
pores [5]. In this case, the much greater influence
exerted by the pore wall on the structure of the pore
fluid than might be inferred from this approximation
can be expected.

In the previous simulation work for systems of cylin-
drical pores [21-23], the size-exclusion effect was
explained in terms of the work required to create a
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Fig. 2. Partition coefficient as a function of XA for n,*=0.1
and n,*=0.45.

cavity in the pore fluid. The degree of partitioning
was observed to be very sensitive to the local pore
density in the vicinity of the pore wall. In equilibrium
partitioning, the partition coefficient is primarily deter-
mined by configurational entropy differences between
the bulk and the pore fluid phase. Under these condi-
tions one may expect the local molecular configuration
in the grand canonical ensemble to play an important
role in size-exclusion partitioning.

A physical interpretation of this observation follows
from thermodynamic arguments similar to those used
in the scaled particle theory [24]. An alternative form
for the partition coefficient can be written as

amn

K=(1- exp[fw:l

kT

where W,(A) and W,(}) are the reversible work to
create a cavity of size A in the pore and the bulk
phase, respectively.

The results in Figs. 2 and 3 demonstrate this last
point more clearly. In Fig. 2, the two sets of the
GCEMC runs at the fixed bulk concentrations of n,*=
0.1 and n,* =0.45 were carried out over wider ranges
of A-values. The amount of cavity work required to
accommodate a particle in the pore fluid increases ra-
pidly with the increment of A-values, and this leads
to a significant reduction of size-exclusion partitioning.
For the sufficiently dilute systems, particle-particle in-
teractions become negligible, and, for any given values
of A, the reversible cavity work in the pore phase ap-
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Fig. 3. Normalized pore density profile as a function of
t/o.

The open squares and the filled circles correspond
to the systems of n,*=0.1 and n,*=0.45, respec-
tively.

proaches that in the bulk phase. In the limit of n,*—0,
the partition coefficient expressed in Eq. (11) is simply
reduced to the Henry's law constant K, as given in
Eq. (7), ie, (12

As we increase bulk concentrations, the Henry's law
constant shown as the dotted curve in Fig. 2 is no
longer valid even for the dilute bulk concentration
of n,*=0.1. Obviously, the concentration effects are
more profound in the case of n,*=0.45. The break-
down of the Henry’s law results from density inhomo-
geneities in the pore fluid. The resulting partition co-
efficients predicted by theoretical virial expansions for
the dilute concentration (n,*=0.1) are observed to be
in reasonable agreement with the corresponding GC-
EMC results. In contrast, significant deviations from
theory were noted for the higher concentration regime
(ny*=0.45). This is again partly due to an inaccurate
evaluation of the second virial coefficients via the Per-
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cus-Yevick approximation employed in virial expan-
sion equations.

In the range 0.5<A<1.0 only two occupancy states
are permissible since the accessible pore region can
be occupied by zero or one particle. In this case the
average occupation number of particles in equilibrium
with an external bulk fluid can be exactly calculated
using the two-state Markov chain processes [25]. The
chain-dotted curve in Fig. 2 represents the partition
coefficients obtained from the extended two-state mod-
el. For A>05 the excellent agreement with simula-
tion results confirms the validity of this model. For
the systems of higher concentrations, configurations
occupied by one particle become more probable in
the grand canonical ensemble. It may be shown, using
this extended two-state model, that the local maximum
moves upward to the right towards A—>1.0 as the bulk
concentration increases. As the concentration decrea-
ses, however, this peak will be gradually diminished,
and eventually disappears in the ideal gas limit, n,*
—0.

In Fig. 3 we have plotted the pore density profiles
scaled to the corresponding bulk concentration, nr)
/my, for a few selected runs to illustrate the manner
in which the local pore densities change with increas-
ing A-values. The open squares and the filled circles,
respectively, correspond to the normalized density
profiles inside a spherical hard-wall pore for the sys-
tems of n,* =0.1 and n;*=0.45. Pore profiles for A>0.5
are not displayed in this paper since the resulting pro-
files are constant over the pore volume. In this case
there is a uniform probability of finding the center
of one particle in the pore phase where the external
potential is zero.

The average pore densities for n,*=0.1 are close
to those of the bulk system. As concentration increa-
ses, however, density oscillations arise inside the pore
with a wavelength of the order of the particle size.
Such density inhomogeneities exhibited in Fig. 3 pri-
marily result from the shielding effect in the imme-
diate vicinity of the pore walls. In the case of A=0.2
and n,*=045, for example, the pore fluid forms a
double-layered structure with the higher peak near
the wall, while a monolayer pore structure extending
two particles across the pore diameter is predominant
for A=0.4 and n,*=045. This result is attributed to
the fact that confined hard-sphere fluids in a spherical
pore experience the structural reordering in the vicin-
ity of the pore wall even though the energetic interac-
tion considered here is only steric exclusion. The
above observations are not restricted to hard-sphere
fluids. Equilibrium partitioning and pore structural
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properties similar to those illustrated in Figs. 2 and
3 have been shown to exist for Lennard-Jones fluids
trapped in two slit pores [26] and cylindrical pores
[11,23]. The magnitude of partitioning in adsorbing
systems of cylindrical pores was also found to be qual-
itatively close to the corresponding results for the
hard-sphere systems [21,22].

CONCLUSION

In the present paper we have reported the compu-
ter simulation results via the grand canonical ensem-
ble Monte Carlo method to investigate the thermody-
namic and structural properties of hard-sphere fluids
confined within a spherical hard-wall. The accuracy
of the virial expansion for size-exclusion partitioning,
taken to terms of order n,*, is limited to bulk phase
concentrations less than 0.3, As the particle size ap-
proaches the pore size, the range of applicability of
this approximation is further reduced. In this limit, the
extended two-state model is very reliable for predic-
ting K-values for the entire range of bulk concentra-
tions. The equilibrium and structural properties ob-
tained in this work can be used as a convenient refer-
ence for more sophisticated real systems. Although
this simple spherical pore model represents only the
conceptual nature of ideal pores, the pore-size and con-
centration effects can be useful in the study of zeolitic
pore systems. In practice the geometry of many zeolite
cavities closely resembles a spherical model pore. OQur
simulation results, in conjunction with previous simu-
lation studies using more realistic model potentials
[27,28], will provide useful insight into the micro-
scopic behavior of fluids adsorbed in zeolite pores. In
the high-temperature limit, the effect of the attractive
force field becomes negligible so that our simulation
results for hard-sphere interactions can be reasonable
approximations for such real systems.
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NOMENCLATURE

: spherical pore diameter

: Boltzmann constant

: partition coefficient

: partition coefficient at infinite dilution

= e
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n : number density

r : relative distance or radial position
R, : effective pore radius

T  :absolute temperature

V  :volume

Ve  effective pore volume

W() : reversible work required to create a cavity of

size A

Greek Letters
ao,a2 : first and second virial coefficient

T >3 <

© Qa

: activity coefficient

: hard-sphere packing fraction
: particle-to-pore size ratio

: chemical potential

: standard chemical potential
: hard-sphere diameter

: potential interaction

Subscripts

b
ff
fw

|%

: bulk phase

: fluid-fluid

: fluid-pore wall
: pore phase

Superscript

*

: reduced quantity
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