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A b s t r a c t - T h e  grand canonical ensemble Monte Carlo simulations have been carried out to inves- 
tigate the thermodynamic and structural properties of hard-sphere fluids confined within a spherical 
hard-wall pore. Equilibrium partition coefficients and pore density profiles are computed over a wide 
range of particle-to-pore size ratios and concentrations distributing between an external bulk phase 
and a pore phase. The simulation data for equilibrium partitioning are used to assess the limitations 
and applicabilities of theoretical approximations including the virial expansion equation and the exten- 
ded two-state prediction. The Monte Carlo results obtained in these studies, in conjunction with 
the theoretical models, provide the basis for a discussion on the steric effects in size-exclusion parti- 
tioning of such systems. 

INTRODUCTION 

Quantitative prediction of partitioning or distribu- 
tion equilibrium is often necessary for the design of 
units in the chemical processes, including such areas 
as gel-permeation chromatography, membrane separa- 
tion and transport, and adsorption processes using he- 
terogeneous catalysis. The magnitude of partitioning 
into porous media may significantly differ from one 
system to another. One of the most important contri- 
butions to equilibrium partitioning is the steric exclu- 
sion effect between one molecule and the,. external 
pore wall. In addition, the presence of adsorption force 
fields influences equilibrium partitioning, particularly 
when the fluid is gas or vapor. In such cases the attrac- 
tive interaction can enhance the degree of partition- 
ing whereas the repulsive interaction will reduce the 
partition coefficient. 

Although the concept of size-exclusion partitioning 
was recognized many years ago Ell,  it was only com- 
paratively recent that theoretical equations have been 
developed and applied for pore systems. Following 
from the pioneering work of Giddings et al. E23, there 
are several theoretical equations based on statistical 
mechanical approximations. Currently, the, different 
approaches to this subject may be classified as (i) virial 

t To whom all correspondences to be addressed. 

expansions [3-7], (ii) integral equation theories [-8- 
101, and (iii) density functional approximations Ell-  
131. A comprehensive review in this area is provided 
by Deen El4], and more recently by Fanti [-151. 

Reliable and unambiguous results have become in- 
creasingly necessary to eliminate any underlying un- 
certainties involved in various theoretical approaches. 
One of the most widely used model pores in these 
studies is a geometrically ideal pore such as a slit, 
cylindrical, or spherical one. The simplest possible 
model potential is that of a hard-sphere fluid com- 
bined with only sterically exclusive hard-wall interac- 
tions. However, tile present level of modeling achieve- 
ments in this area is far too crude to allow direct com- 
parison with real laboratory experiment. Consequent- 
ly, as an intermediate between theory and experi- 
ment, molecular-based computer simulations have pro- 
ved to be an extremely useful diagnostic tool. In prin- 
ciple such machine experiment (computer simulation) 
can represent essentially 'exact '  experimental data 
for precisely defined model systems. 

In the present work, we investigate the thermody- 
namic and structural properties of confined hard- 
sphere fluids inside a structureless spherical hard-wall 
pore. To this end, grand canonical ensemble Monte 
Carlo (GCEMC) simulations have been carried out 
over a wide range of pore fluid concentrations and 
particle-to-pore size ratios. A simple pore model is 
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used to elucidate the most important features govern- 
ing the size-exclusion partitioning in a spherical cav- 
ity. Our simulation results can also provide a basis 
to discuss whether or to what extent theoretical ap- 
proximations appearing in the literature can be applied 
to predict the equilibrium properties of such systems. 

EQUILIBRIUM PARTITIONING 

The partition coefficient. K, is defined as the ratio 
of the average concentration in the pore phase to that 
in the external bulk phase under equilibrium condi- 
tions: 

K =  np (1) 
nb 

where the subscripts p and b refer to the pore and 
the bulk phase, respectively. 

Since the bulk and the pore fluids are in equilib- 
rium, the chemical potentials are the same in both 
phases: 

= ~ (2) 

Choosing the ideal gas state of unit activity and fixed 
temperature as the standard state, the chemical poten- 
tials for both phases can be written as 

= ~a ~ + kT In (u nb) (3) 

and 

p p : g " + k T  In( Vp yp Up ) (4) 
Vp.e , 

where k is the Boltzmann constant and y is the activity 
coefficient. V~ and Vp.~,, respectively, denote the total 
pore volume and the effective pore volume accessible 
to the single pore particle. 

From Eq. (1) through Eq. (4) one may find 

K= Vp.~ y~ (5) 
v, y~ 

The equilibrium partition coefficient expressed in this 
equation is a general expression for a given pore sys- 
tem. 

In the virial-type approaches [3-7], the ratio of the 
activity coefficients in Eq. (5) can be written as a se- 
ries expansion in powers of the reduced bulk concen- 
tration n~*: 

K--K.,(I+a~ n~*+a2 n**2+ "--) (6) 

The leading term, Ko, directly corresponds to the 
Henry's law constant at infinite dilution resulting from 

particle-pore wall interactions alone. Computations are 
simplest in this Henry's law limit where interactions 
among pore particles become negligible. In the case 
of rigid particles inside impenetrable hard-wall pores, 
the center of a particle cannot be closer to the pore 
wall than the wall contact distance. As a result, in 
the systems of hard-sphere fluids within geometrically 
well-defined pores, the Henry's law constant is simply 
given by 

V~'~H = (1 - X.)" (7) 
K ' =  Vp 

where k is the pm~icle-to-pore size ratio and n =  1, 
2, or 3 for the infinite slit, cylindrical, or spherical 
pores, respectively. 

cq, a2, etc., appearing in Eq. (6) represent the virial 
coefficients arising from the interaction of clusters of 
two, three, etc., pore particles with the pore wall. For 
a one-component hard-sphere fluid trapped in a slit, 
cylindrical, and spherical pore, the first and second 
virial coefficients, ch and a2, can be evaluated within 
the framework of the statistical mechanics [3-51]. The 
results obtained for the first virial coefficient are es- 
sentially exact. However, the second virial coefficient 
must be calculated numerically, e.g. with the aid of 
the Percus-Yevick approximation in order to avoid the 
complex configurational integral of three particles si- 
multaneously interacting with each other and with the 
pore wall. An obvious trend is that the higher order 
terms in the virial expansion increase in computational 
complexity, and direct calculations are very difficult 
even for simple pore geometries. 

T H E  GCEMC SIMULATION M E T H O D  

We consider a system of a hard-sphere fluid with 
molecules of diameter a inside a structureless spheri- 
cal hard-wall pore of diameter d~. The fluid-fluid, 0e, 
and the fluid-wall interactions, ~,,,, can be expressed 
a s  

= ( oo, r>~  
oar) 0, r < o  (8) 

and 

/ ~, r>Rp.r 
~ ( r )  = ~ 0, r<Rp.~ (9) 

where Rp.r represents the effective pore radius, i.e., 
(d~ - ~)/2. 

The fluid inside the pore is in equilibrium with the 
bulk fluid. In the grand canonical ensemble itself, the 
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chemical potential la, the total volume V, and the tem- 
perature T of the system are fixed. Since the number 
of fluid particles is allowed to fluctuate in this bWT- 
ensemble, the GCEMC calculation is most appropriate 
for determining the partition coefficient for the systems 
to be studied E16, 171. Asymmetric GCEMC sam- 
pling, proposed by Adams [18, 193, consists of two 
independent steps. In the first step, a randomly cho- 
sen particle is moved within a given maximum displace- 
ment, The move is either accepted or rejected sub- 
ject to the potential energy change. This procedure 
is exactly the same as the conventional canonical en- 
semble Monte Carlo method. The second step pro- 
ceeds to attempt an addition or removal of a particle. 
The success of either an addition or remowd is con- 
trolled both by the potential energy change and by 
the chemical potential parameter. This compound 
event is repeated as many times as is desired and 
the equilibrium properties of the systems are evalua- 
ted at each step. 

Computations for the bulk hard-sphere fluid were 
not required since the chemical potential in Eq. (2), 
or conversely the activity coefficient in Eq. (3), at any 
given concentration can be calculated with sufficient 
accuracy using the Carnahan-Starling equation of state 

[203: 

_ ~o _ q ( 8 -  9-q + 3q 2) (10) 
kT (1 - q)3 

where q = (6/~) nb* is the hard-sphere packing fraction 
and n~*=nb& is the reduced bulk number density. 

The initialization procedure adopted here was to 
construct the simulated pore model, devoid of fluid 
particles, and then proceed directly to the GCEMC 
algorithm of the hard-sphere fluid E183. During the 
initial stages of a simulation the configurations genera- 
ted were not representative of the equilibrium ensem- 
ble and were discarded from the averaging process. 
In all cases studied here configurations were equili- 
brated for 2-4 million steps before accumulating data. 
The resulting ensemble averages were obtained du- 
ring the final 40-80 million simulation steps. 

R E S U L T S  AND DISCUSSION 

In Fig. 1 we illustrate the concentration dependen- 
cies on size-exclusion partitioning for the particle-to- 
pore size ratios, ),=0.2 and ),=0.4. The resulting par- 
tition coefficients obtained from the GCEMC compu- 
tations are shown as a function of bulk concentrations. 
Also shown in this figure as solid curves are theoreti- 
cal predictions using the virial-type expansions given 

Fig. 1. Partition coefficient as a function of fib* for ) , = 0 . 2  

and )`= 0.4. 

in Eq. (6), in which terms up to order of nb *~ are includ- 
ed. To date, this virial expression has been moder- 
ately successful in explaining the concentration effects 
for the equilibrium partitioning of inert, noninteracting 
solute systems. For the systems studied here, the a- 
greement with the GCEMC results is seen to be good 
in lower concentrations n~*<_0.3. 

The partition coefficients calculated using this trun- 
cated virial expansion, however, depart from the sim- 
ulation results with increasing bulk fluid concentra- 
tions. Furthermore, the limited form of the three-term 
virial expansion in Eq. (6) can either underestimate 
or overestimate K-values depending on the values of 
)` and n~*. The poor agreement with the GCEMC cal- 
culations for higher bulk concentrations is primarily 
due to the omitted terms of order of nb .3 or greater. 
In addition, as mentioned earlier, the theoretical re- 
suits for ct2 calculated by Glandt E3, 41 and Anderson 
and Brannon [5] are based on the Percus-Yeviick ap- 
proximation. This approximation was found to be inac- 
curate particularly at the high concentration regime; 
for example, the second virial coefficient was under- 
estimated by as much as 35% for narrow cylindrical 
pores [5~. In this case, the much greater influence 
exerted by the pore wall on the structure of the pore 
fluid than might be inferred from this approximation 
can be expected. 

In the previous simulation work for systems of cylin- 
drical pores E21.-233, the size-exclusion effect was 
explained in terms of the work required to create a 
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Fig. 2. Partition coefficient as a function of ;k fi)r no*= 0.1 

and nh* = 0.45. 

cavity in the pore fluid. The degree of partitionin~ 
was observed to be very sensitive to the local pore 
density in the vicinity of the pore wall. In equilibrium 
partitioning, the partition coefficient is primarily deter- 
mined by conflgurational entropy differences between 
the bulk and the pore fluid phase. Under these condi- 
tions one may expect the local molecular configuration 
in the grand canonical ensemble to play an important 
role in size-exclusion partitioning. 

A physical interpretation of this observation follows 
from thermodynamic arguments similar to those used 
in the scaled particle theory [24]. An alternative form 
for the partition coefficient can be written as 

f WAX)-Wb(X) ] 
K = ( 1 - k )  a e x p [ -  kT J (11) 

where Wp(;L) and Wb(k) are the reversible work to 
create a cavity of size )v in the pore and the bulk 
phase, respectively. 

The results in Figs. 2 and 3 demonstrate this last 
point more clearly. In Fig. 2, the two sets of the 
GCEMC runs at the fixed bulk concentrations of n~*= 
0.1 and rib* =0.45 were carried out over wider ranges 
of )v-values. The amount of cavity work required to 
accommodate a particle in the pore fluid increases ra- 
pidly with the increment of )v-values, and this leads 
to a significant reduction of size-exclusion partitioning. 
For the sufficiently dilute systems, particle--particle in- 
teractions become negligible, and, for any given values 
of ~ the reversible cavity work in the pore phase ap- 

Fig. 3. Normalized pore density profile as a function of 

r/~. 

The open squares and the filled circles correspond 
to the systems of r~*=0.1 and nb*=0.45, respec- 
tively. 

proaches that in the bulk phase. In the limit of n~*--~0, 
the partition coefficient expressed in Eq. (11) is simply 
reduced to the Henry's law constant I~, as given in 
Eq. (7), i.e., (1 k) :~. 

As we increase bulk concentrations, the Hen:ry's law 
constant shown as the dotted curve in Fig. :2 is no 
longer valid ewm for the dilute bulk concentration 
of nb*-0.1. Obviously, the concentration effects are 
more profound in the case of nb*=0.45. The break- 
down of the Henry's law results from density inhomo- 
geneities in the pore fluid. The resulting partition co- 
efficients predicted by theoretical virial expansions for 
the dilute concentration (nb*=0.1) are observed to be 
in reasonable agreement with the corresponding GC- 
EMC results. In contrast, significant deviations from 
theory were noted for the higher concentration regime 
(n~*=0.45). This; is again partly due to an inaccurate 
evaluation of the second virial coefficients via lhe Per- 
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cus-Yevick approximation employed in virial expan- 
sion equations. 

In the range 0.5<L<l.O only two occupancy states 
are permissible since the accessible pore region can 
be occupied by zero or one particle. In this case the 
average occupation number of particles in equilibrium 
with an external buik fluid can be exactly calculated 
using the two-state Markov chain processes [251. The 
chain-dotted curve in Fig. 2 represents the partition 
coefficients obtained from the extended two-state mod- 
el. For 1~>0.5 the excellent agreement with simula- 
tion results confirms the validity of this model. For 
the systems of higher concentrations, configurations 
occupied by one particle become more probable in 
the grand canonical ensemble. It may be shown, using 
this extended two-state model, that the local maximum 
moves upward to the right towards k--~l.0 as the bulk 
concentration increases. As the concentration decrea- 
ses, however, this peak will be gradually diminished, 
and eventually disappears in the ideal gas limit, i~* 

--~0. 
In Fig. 3 we have plotted the pore density profiles 

scaled to the corresponding bulk concentration, np(r) 
/~ ,  for a few selected runs to illustrate the manner 
in which the local pore densities change with increas- 
ing ~.-values. The open squares and the filled circles, 
respectively, correspond to the normalized density 
profiles inside a spherical hard-wall pore for the sys- 
tems of n~*=0.1 and nb*=0.45. Pore profiles for ~.>0.5 
are not displayed in this paper since the resulting pro- 
files are constant over the pore volume. In this case 
there is a uniform probability of finding the center 
of one particle in the pore phase where the external 
potential is zero. 

The average pore densities for nb*=0.1 are close 
to those of the bulk system. As concentration increa- 
ses, however, density oscillations arise inside the pore 
with a wavelength of the order of the particle size. 
Such density inhomogeneities exhibited in Fig. 3 pri- 
marily result from the shielding effect in the imme- 
diate vicinity of the pore walls. In the case of )v=0.2 
and nb*=O.45, for example, the pore fluid forms a 
double-layered structure with the higher peak near 
the wall, while a monolayer pore structure extending 
two particles across the pore diameter is predominant 
for k=0.4 and n~*=0.45. This result is attributed to 
the fact that confined hard-sphere fluids in a spherical 
pore experience the structural reordering in the vicin- 
ity of the pore wall even though the energetic interac- 
tion considered here is only steric exclusion. The 
above observations are not restricted to hard-sphere 
fluids. Equilibrium partitioning and pore structural 

properties similar to those illustrated in Figs. 2 and 
3 have been shown to exist for Lennard-Jones fluids 
trapped in two slit pores E26] and cylindrical pores 
•11, 23]. The magnitude of partitioning in adsorbing 
systems of cylindrical pores was also found to be qual- 
itatively close to the corresponding results for the 
hard-sphere systems E21,223. 

CONCLUSION 

In the present paper we have reported the compu- 
ter simulation results via the grand canonical ensem- 
ble Monte Carlo method to investigate the therraody- 
namic and structural properties of hard-sphere fluids 
confined within a spherical hard-wall The accuracy 
of the virial expansion for size-exclusion partitioning, 
taken to terms of order r~ *z, is limited to bulk phase 
concentrations less than 0.3. As the particle size ap- 
proaches the pore size, the range of applicability of 
this approximation is further reduced. In this limit, the 
extended two-state model is very reliable for predic- 
ting K-values for the entire range of bulk concentra- 
tions. The equilibrium and structural properties ob- 
tained in this work can be used as a convenient refer- 
ence for more sophisticated real systems. Although 
this simple spherical pore model represents only the 
conceptual nature of idea[ pores, the pore-size and con- 
centration effects can be useful in the study of zeolitic 
pore systems. In practice the geometry of many zeolite 
cavities closely resembles a spherical model pore. Our 
simulation results, in conjunction with previous simu- 
lation studies using more realistic model potentials 

E27, 28], will provide useful insight into the micro- 
scopic behavior of fluids adsorbed in zeolite pores. In 
the high-temperature limit, the effect of the attractive 
force field becomes negligible so that our simulation 
results for hard-sphere interactions can be reasonable 
approximations for such real systems. 
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NOMENCLATURE 

dp :spherical pore diameter 
k : Boltzmann constant 
K : partition coefficient 
Ko :partition coefficient at infinite dilution 
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n : number density 
r :relative distance or radial position 
R~.~ :effective pore radius 
T : absolute temperature 
V : volume 
Vp, ej :effective pore volume 
W(L) : reversible work required to create a cavity of 

size L 

Greek Letters 
cq,ct2 :first and second virial coefficient 
y : activity coefficient 

:hard-sphere packing fraction 
k :particle-to-pore size ratio 
ia : chemical potential 
p~ :standard chemical potential 
e~ : hard-sphere diameter 
r : potential interaction 

Subscripts 
b : bulk phase 
ff : fluid-fluid 
fw : fluid-pore wall 
p : pore phase 

Superscript 
* : reduced quantity 
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